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1 Preliminary: Multivariate Gaussians

Definition 1.1 (multivariate normal distribution). A random vector X ∈ Rd is said to have a multi-
variate normal distribution with mean vector µ ∈ Rd and covariance matrix Σ if Σ is positive definite
and x has density

p(X;µ,Σ) =
1

(2π)
d
2 det(Σ)

1
2

exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
.

We can partition the d variables to two sets, A and B. In this case we can write X =

[
XA

XB

]
,

µ =

[
µA

µB

]
, Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
.

Proposition 1.2. The conditional density p(XA|XB) =
p(XA,XB ;µ,Σ)∫

XA
p(XA,XB ;µ,Σ)dXB

are also multivariate nor-

mal:
p(XA|XB) ∼ N

(
µA +ΣABΣ

−1
BB(XB − µB),ΣAA − ΣABΣ

−1
BBΣBA

)
.

Proof.

p(XA|XB) =
p(XA, XB ;µ,Σ)∫

XA
p(XA, XB ;µ,Σ)dXB

=
1∫

XA
p(XA, XB ;µ,Σ)dXB

exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)

=
1

Z
exp

(
−1

2

[
XA − µA

XB − µB

]T [
VAA VAB

VBA VBB

] [
XA − µA

XB − µB

])
, (1)

where Z does not depend on XA, and Σ−1 = V =

[
VAA VAB

VBA VBB

]
. Observe that

[
XA − µA

XB − µB

]T [
VAA VAB

VBA VBB

] [
XA − µA

XB − µB

]
= (XA − µA)

T
VAA (XA − µA)

+ (XA − µA)
T
VAB (XB − µB)

+ (XB − µB)
T
VBA (XA − µA)

+ (XB − µB)
T
VBB (XB − µB) .
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Retaining only terms depending on XA, and using the fact that VAB = V T
BA we can thus have

p(XA|XB) ∝ exp

(
−1

2

[
XT

AVAAXA − 2XT
AVAAµA + 2XT

AVABXB

])
,

where the term inside the exponential isXT
AVAAXA−2XT

A (VAAµA − VABXB). Completing the squares1,
we can write this as(

XA − (µA − V −1
AAVABXB)

)T
VAA

(
XA − (µA − V −1

AAVABXB)
)
+ c,

where c is a constant not depending on XA. From this, we deduce that p(XA|XB) is normal with mean
µ = µA − V −1

AAVABXB and covariance V −1
AA . Finally, we recall the form of the inverse of a block matrix

to have VAA =
(
ΣAA − ΣABΣ

−1
BBΣBA

)−1
, and VBA = −

(
ΣAA − ΣABΣ

−1
BBΣBA

)−1 − ΣABΣ
−1
BB .

2 Gaussian Processes

Gaussian processes are extension of multivariate Gaussians from vectors to functions.

Definition 2.1 (Gaussian process). A GP with mean function m(·) and covariance function k(·, ·) is
a stochastic process {Zt : t ∈ T } such that for every finite collection t1, . . . , tn of indices, the vector
(Zt1 , . . . , Ztn)

T has a multivariate normal distribution with mean vector µ = (m(Zt1), . . . ,m(Ztn))
T

and covariance matrix K such that Kij = k(Zti , Ztj ). We

Since the covariance function has to be positive definite, it makes sense that k will be a kernel
function. A typical choice for k is the RBF function

k(x, y) = exp

(
−∥x− y∥2

σ2

)
.

When we say that a function f is a sample drawn from a GP prior, we can think of f as a sample
from a infinite dimensional multivariate normal vector, where each entry corresponds to an index t ∈ T .
That is, f = {f(xt) : t ∈ T }.

3 Gaussian Process Regression

GPR is a popular tool to quantify prediction uncertainty. Let {(xi, yi)}, i = 1, . . . n be a training set,
drawn from some data distribution D. where xi ∈ Rd, and yi ∈ R. We model the data by yi = f(xi)+ϵi,
where f : Rd → R is some function, drawn from a GP prior with zero mean and covariance function k,
and the ϵi’s are iid samples from zero mean normal distribution with variance σ2. Let {(x∗

j )}, j = 1, . . .m
be a test set, also drawn from the x-marginal distribution induced from D. In vector form we can write

y⃗ = f⃗ + ϵ⃗,

and
y⃗∗ = f⃗∗ + ϵ⃗∗,

where y⃗ = (y1, . . . , yn)
T , f⃗ = (f(x1), . . . , f(xn))

T , and so on. Similarly, we write X = (xT
1 , . . . x

T
n )

T ,
i.e., an n× d matrix.

1https://en.wikipedia.org/wiki/Completing_the_square
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3.1 Prediction

Since f is a sample from a Gaussian process prior with zero mean vector and covariance function k, it
follows that given X,X∗ [

f⃗

f⃗∗

]
∼ N

(
0⃗,

[
k(X,X) k(X,X∗)
k(X∗, X) k(X∗, X∗)

]
,

)
where k(X,X∗)ij = k(xi, x

∗
j ), and so on. Since both f⃗ and ⃗epsilon are Gaussians, it follows that so is

y⃗, i.e., given X,X∗ [
Y⃗

Y⃗ ∗

]
∼ N

(
0⃗,

[
k(X,X) + σ2I k(X,X∗)
k(X∗, X) k(X∗, X∗) + σ2I

]
.

)
Finally, we are interested in the predictive distribution

p(Y⃗ ∗|X,X∗, y⃗).

recalling proposition 1.2, this distribution is multivariate Gaussian

p(Y⃗ ∗|X,X∗, y∗) = N (µ∗,Σ∗) , (2)

with
µ∗ = k(X,X∗)(k(X,X) + σ2I)−1y⃗,

and
Σ∗ = k(X∗, X∗) + σ2I)− k(X∗, X)((k(X,X) + σ2I)−1k(X,X∗).

And that’s it :)
In particular, this gives us a measure of uncertainty in the prediction of y∗j , which is Σ∗

jj , as

Y ∗
j ∼ N

(
µ∗
j ,Σ

∗
jj

)
.

Remark 3.1. The noise variance σ2 can be estimated using a validation set, by a grid search, where
we look for the value that reduces the validation error the most.

4 Application: Bayesian optimization

The goal to optimize the hyperparameters of a machine learning model (say, a neural network).

• Clearly, these cannot be optimized using gradient-based optimization.

• However, given a setting of hyperparameters we can train the model and measure its validation
loss.

• We consider the Validation loss as a GP, defined over the space of all configurations of hyperpa-
rameters. In this case X will correspond to a configuration of hyperparameters and our kernel
function k will quantify the similarity between two different configurations.

• Once we have a few loss measurements at few random configurations of hyperparameters, we can
use equation 2, taking X to be configurations of hyperparameters and Y to be validation loss.

• Given a future configuration to test, we can compute the expected improvement, or the probability
of improvement over the current best configuration, and use this as a criterion for selection of the
figure configuration to try.
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• Once we try a new configuration, we repeat the process (with updated conditional mean and
covariance).

• Note that since different hyperparameters have different scales, it’s useful to standardize the scales
of all hyperparameters.
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