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1 Preliminary: Multivariate Gaussians

Definition 1.1 (multivariate normal distribution). A random vector X € R* is said to have a multi-
variate normal distribution with mean vector i € R and covariance matriz ¥ if ¥ is positive definite
and x has density

1 1
p(X; ,Z:,exp(—X— Ty=1(x - >
(X5, %) 2 Fder(n)} 5 (X —n) (X —n)
We can partition the d variables to two sets, A and B. In this case we can write X = B((A},
B
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Proposition 1.2. The conditional density p(X | Xp) = 7 p(Xa.Xpip,B)
X
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are also multivariate nor-

mal:
p(Xa|XB) ~N (pa+ Yap¥pp(Xp — 1B),Saa — EABZ)ElBEBA) .
Proof.
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where Z does not depend on X 4, and X' =V = _ Observe that
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Retaining only terms depending on X 4, and using the fact that Vap = VZ, we can thus have
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where the term inside the exponential is XZ;VAAXA —2X§ (Vaapa — VapXp). Completing the Squareﬂ
we can write this as
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where c is a constant not depending on X 4. From this, we deduce that p(X 4|X ) is normal with mean
w=pa—Vy jVA pXp and covariance V| j. Finally, we recall the form of the inverse of a block matrix
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to have Vaa = (Saa — SapXppEpa) , and Vpa = — (Saa — SapXppEea)  — Sanlpp. O

2 Gaussian Processes

Gaussian processes are extension of multivariate Gaussians from vectors to functions.

Definition 2.1 (Gaussian process). A GP with mean function m(-) and covariance function k(-,-) is
a stochastic process {Z; : t € T} such that for every finite collection ty,...,t, of indices, the vector
(Zty sy 2y, )T has a multivariate normal distribution with mean vector p = (m(Zy,),...,m(Z;, )T
and covariance matriz K such that Kij = k(Zy,, Zy;). We

Since the covariance function has to be positive definite, it makes sense that k will be a kernel
function. A typical choice for k is the RBF function

o = o (L=

g

When we say that a function f is a sample drawn from a GP prior, we can think of f as a sample
from a infinite dimensional multivariate normal vector, where each entry corresponds to an index ¢t € 7.

That is, f = {f(x) : t € T}.

3 Gaussian Process Regression

GPR is a popular tool to quantify prediction uncertainty. Let {(z;,y;)}, ¢ = 1,...n be a training set,
drawn from some data distribution D. where z; € Rd, and y; € R. We model the data by y; = f(z;)+¢;,
where f : R? — R is some function, drawn from a GP prior with zero mean and covariance function k,
and the ¢;’s are iid samples from zero mean normal distribution with variance o2. Let {@)hi=1...m
be a test set, also drawn from the xz-marginal distribution induced from D. In vector form we can write

j=F+e
and .
y=rr+e,
where 7 = (y1,...,yn)T, f = (f(z1),..., f(z,))T, and so on. Similarly, we write X = (z7,...27
i.e., an n X d matrix.

Thttps://en.wikipedia.org/wiki/Completing_the_square
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3.1 Prediction
Since f is a sample from a Gaussian process prior with zero mean vector and covariance function k, it

follows that given X, X*
f o Th(X,X)  k(X,X*)
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where k(X, X*);; = k(x;,2}), and so on. Since both £ and epsilon are Gaussians, it follows that so is
Y, i.e., given X, X*

Y NG E(X,X)+ 02T k(X,X*)

Y+ T E(X* X)) B(X*, X*)+ 021"
Finally, we are interested in the predictive distribution

p(Y*|X, X*,5).
recalling proposition this distribution is multivariate Gaussian
p(Y*|X, X" y") = N (", 5%), (2)
with
= kX, X*)(k(X,X)+ )71y,

and
Y = k(X X)) 4 0% — k(X X)(B(X, X) + o217 k(X, X7).
And that’s it :)
In particular, this gives us a measure of uncertainty in the prediction of y7, which is X7, as
Vi~ N (15, %55) -
Remark 3.1. The noise variance o can be estimated using a validation set, by a grid search, where
we look for the value that reduces the validation error the most.

4 Application: Bayesian optimization
The goal to optimize the hyperparameters of a machine learning model (say, a neural network).
e Clearly, these cannot be optimized using gradient-based optimization.

e However, given a setting of hyperparameters we can train the model and measure its validation
loss.

e We consider the Validation loss as a GP, defined over the space of all configurations of hyperpa-
rameters. In this case X will correspond to a configuration of hyperparameters and our kernel
function k will quantify the similarity between two different configurations.

e Once we have a few loss measurements at few random configurations of hyperparameters, we can
use equation [2] taking X to be configurations of hyperparameters and Y to be validation loss.

e Given a future configuration to test, we can compute the expected improvement, or the probability
of improvement over the current best configuration, and use this as a criterion for selection of the
figure configuration to try.



e Once we try a new configuration, we repeat the process (with updated conditional mean and
covariance).

e Note that since different hyperparameters have different scales, it’s useful to standardize the scales
of all hyperparameters.
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